
1

1.1

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

MWCapture SDK macOS Examples Documentation

Preface
Overview

Version History

Examples
Example Introduction

Audio Capture Example

Capture By Input Example

Capture By Timer Example

Get ANC Packet Example

HDMI Info Frame Example

Input Signal Example

Input Source Example

Input Signal Notify Example

Read-Write EDID Example

USB Device Detect Example

Set USB Capture Fourcc Example

Repair MP4 Files Example

AV Capture Example

AV Capture Example 2



2

Overview
SDK Version 3 is Magewell's latest SDK release, supporting Magewell Pro capture and USB Family capture devices. Hereinafter, "all devices" refers
to the aforesaid devices.

SDK Version 3 provides both private interfaces and general interfaces based on AVFoundation, balancing performance, flexibility, and versatility. For
scenarios with high performance requirements that need flexible audio and video data capture (such as capturing only the upper-left quarter of a
frame, capturing data at a custom frame rate, or capturing audio data in non-LPCM format), private interfaces are recommended. For scenarios using
multiple family of Magewell capture devices, applications developed with general interfaces will be compatible across all supported devices.

The interfaces provided by SDK Version 3 can be categorized into two main types: audio/video data capture interfaces and control interfaces. Data
capture interfaces are further divided into private and general interfaces:

Private capture interfaces: Pro Capture cards
General capture interfaces: Pro Capture cards, and USB Capture devices
Control interfaces: All are private interfaces with consistent functionality across different device family. For example, the MWGetVideoStatus
interface for retrieving input video signal status works with all capture devices.

To help developers quickly integrate the Magewell SDK into their applications and shorten the development cycle, SDK v3 includes numerous sample
projects covering various common usage scenarios. Developers can select appropriate samples for reference based on their specific requirements.

Supported Products

Pro Capture Family
USB Capture Family

Supported Operating Systems

macOS Monterey 12.7.4 and later
Compatible with driver v1.4.64 and later
Compatible with both Intel and Apple Silicon chips
Note: For macOS versions prior to Monterey 12.7.4, please contact us through Tickets system for additional information.

https://tickets.magewell.com/question/create


3

Version History

Version V3.4.0 (2025/11/19)

Compatible with Mac drivers V1.4.64 and later, and runs on Macs powered by either Apple silicon or Intel silicon.

Version 3.3.1.16905 (2020/09/30)

Added the GPU-accelerated video encoding module.
Added the MP4 recording module and MP4 recording library.
Added the Mp4Repair example, which is used to repair MP4 files corrupted by unexpected termination of recording.
Optimized the SDKv3 API documentation.



4

Example Introduction

CmdTools Sample

All samples in this section are command-line based.

AudioCapture: This sample demonstrates the general process of audio data capture using private interfaces, with detailed explanations of the
call logic for various interfaces in audio capture. It serves as a reference for developers working on audio capture. Note that this sample is only
compatible with Pro Capture cards.

CaptureByInput: This sample demonstrates a workflow for capturing video data via the private interfaces, triggered by message notifications.
Compared to the "CaptureByTimer" sample, the resolution and frame rate captured depend on the signal source. The interval of notifications from
the capture card matches the frame interval of the input signal, resulting in a fixed capture frame rate and a more stable operation workflow.

CaptureByTimer: This sample demonstrates another workflow for capturing video data via the private interfaces, using a timer to set capture
times (video capture is performed at specified times). Thus, the capture frame rate is adjustable. Compared to the "CaptureByInput" sample, it is
more suitable for scenarios where the capture frame rate differs from the input frame rate.

GetANCPacket: This sample demonstrates the general process of obtaining ANC (Ancillary) data for a specified channel using private interfaces,
which developers with such requirements can reference.

HDMIInfoFrame: This sample demonstrates the general process of retrieving HDMI information frames using private interfaces, which
developers with such requirements can reference.

InputSignal: This sample demonstrates the general process of obtaining detailed format information about input signals using private interfaces,
including status information for the specified channel, key video signal parameters such as resolution and color space, and critical audio signal
information such as sampling rate and format. Developers are strongly advised to carefully review this sample.

InputSource: This sample demonstrates the general process of obtaining the type and quantity of audio and video input sources using private
interfaces, which developers with such requirements can reference.

InputSignalNotify: This sample demonstrates the process of monitoring input signal changes using private interfaces.

ReadWriteEDID: This sample implements two processes through private interfaces: 1. Exporting the EDID of a specified channel as a binary file;
2. Writing a specified EDID file to a target channel. This sample provides a reference for developers implementing EDID read/write functionality
for devices.

USBDeviceDetect: This sample demonstrates the detection of USB capture device hot-swapping events using private interfaces, which
developers with such requirements can reference.

SetUSBCaptureFourcc: This sample demonstrates the general process of reading and configuring USB video color space attributes using
private interfaces.

Mp4Repair: This sample demonstrates how to repair corrupted video files—specifically, those recorded with LibMWMp4 that became damaged
due to improper termination of recording processes (e.g., caused by abnormal power outages).

GUI Sample

All samples in this section are GUI-based.

AVCapture: The main features of this sample include: (1) Using private interfaces to capture and render video; (2) Using private interfaces to
capture and monitor audio; (3) Configuring video capture resolution, frame rate, and color space; (4) Multi-channel capture; (5) Recording
captured audio and video data as FLV files. Compared to the "AVCapture2" sample, this sample uses private interfaces for both audio and video
capture, resulting in higher capture efficiency and more abundant configurable capture parameters. However, this limits compatibility to only Pro
family capture cards.
AVCapture2: The main features of this sample include: (1) Using general interfaces to capture and render video; (2) Using general interfaces to
capture and monitor audio; (3) Configuring video capture resolution, frame rate, and color space; (4) Multi-channel capture. Unlike "AVCapture",
this sample internally leverages AVFoundation for capture implementation, enabling support for all Magewell capture devices with enhanced
versatility. Additionally, you can capture audio and video from different devices.



5

AudioCapture
Supported Hardware Devices: Pro Capture cards

Contents Demonstrated in the Sample:

1. Capturing audio data from input signals
2. Saving LPCM format audio signals as WAV files
3. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device information: MWGetChannelInfoByIndex
3. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
4. Retrieve audio source count and status: MWGetAudioInputSourceArray, MWGetAudioSignalStatus
5. Start audio capture: MWStartAudioCapture
6. Create event: MWCreateEvent
7. Register for message notifications: MWRegisterNotify
8. Wait for event: MWTryWaitEvent, MWWaitEvent
9. Capture one frame of audio data: MWCaptureAudioFrame

10. Write audio data to WAV file
11. Repeat steps 8, 9, and 10 until capture is stopped
12. Stop audio capture and release resources: MWUnregisterNotify, MWCloseEvent, MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



6



7

CaptureByInput
Supported Hardware Devices: Pro Capture cards

Contents Demonstrated in the Sample:

1. Capturing video data according to the format of input signals
2. Saving the last frame of video data as a BMP image
3. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device and interface information: MWGetChannelInfoByIndex
3. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
4. Retrieve video signal status: MWGetVideoSignalStatus
5. Start video capture: MWStartVideoCapture
6. Create event: MWCreateEvent
7. Register for message notifications: MWRegisterNotify MWCAP_NOTIFY_VIDEO_FRAME_BUFFERED (normal mode),

MWCAP_NOTIFY_VIDEO_FRAME_BUFFERING (low-latency mode)
8. Wait for event: MWTryWaitEvent, MWWaitEvent
9. Capture video data: MWCaptureVideoFrameToVirtualAddressEx MWCAP_VIDEO_FRAME_ID_NEWEST_BUFFERED (normal mode),

MWCAP_VIDEO_FRAME_ID_NEWEST_BUFFERING (low-latency mode)
10. Retrieve current capture status: MWGetVideoCaptureStatus
11. Repeat steps 8, 9, and 10 until the last frame
12. Save file
13. Deregister message notifications: MWUnregisterNotify
14. Close event: MWCloseEvent
15. Stop capture: MWStopVideoCapture
16. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:



8

Flowchart:



9



10

CaptureByTimer
Supported Hardware Devices: Pro Capture cards

Contents Demonstrated in the Sample:

1. Capturing video data from input signals at a specified frame rate
2. Saving the last frame of video data as a BMP image
3. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device and interface information: MWGetChannelInfoByIndex
3. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
4. Start video capture: MWStartVideoCapture
5. Create event: MWCreateEvent
6. Register timer: MWRegisterTimer
7. Set time schedule: MWScheduleTimer
8. Wait for event: MWTryWaitEvent, MWWaitEvent
9. Capture video data: MWCaptureVideoFrameToVirtualAddressEx

10. Retrieve current capture status: MWGetVideoCaptureStatus
11. Repeat steps 7, 8, 9, and 10 until the last frame
12. Save file
13. Deregister timer: MWUnregisterTimer
14. Close event: MWCloseEvent
15. Stop capture: MWStopVideoCapture
16. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



11



12

GetANCPacket
Supported Hardware Devices: Pro Capture cards supporting SDI signals

Contents Demonstrated in the Sample:

1. Retrieving ANC data packets from SDI signals
2. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device and interface information: MWGetChannelInfoByIndex
3. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath，

MWOpenChannelByPath
4. Clear and reconfigure ANC: MWCaptureSetSDIANCType
5. Create event: MWCreateEvent
6. Register for message notifications: MWRegisterNotify
7. Wait for event: MWTryWaitEvent, MWWaitEvent
8. Retrieve ANC data packet: MWCaptureGetSDIANCPacket
9. Write data to binary file

10. Repeat steps 7, 8, and 9 until polling ends or user actively stops
11. Deregister message notifications: MWUnregisterNotify
12. Close event: MWCloseEvent
13. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



13



14

HDMIInfoFrame
Supported Hardware Devices: Pro Capture cards supporting HDMI signals, USB Capture devices supporting HDMI signals

Contents Demonstrated in the Sample:

1. Detecting and retrieving HDMI signal status and HDMI frame information
2. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
3. Retrieve channel information: MWGetChannelInfo
4. Retrieve input signal status information: MWGetInputSpecificStatus
5. Check if HDMI information frame exists: MWGetHDMIInfoFrameValidFlag
6. Retrieve and output HDMI frame information: MWGetHDMIInfoFramePacket
7. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



15



16

InputSignal
Supported Hardware Devices: Pro Capture cards, USB Capture devices

Contents Demonstrated in the Sample:

1. Retrieving detailed format information of input audio and video signals
2. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
3. Retrieve channel information: MWGetChannelInfo
4. Retrieve input signal status information: MWGetInputSpecificStatus
5. Retrieve video signal status information: MWGetVideoSignalStatus
6. Retrieve audio signal status information: MWGetAudioSignalStatus
7. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



17



18

InputSource
Supported Hardware Devices: Pro Capture cards, USB Capture devices

Contents Demonstrated in the Sample:

1. Retrieving audio and video input source information
2. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
3. Retrieve channel information: MWGetChannelInfo
4. Retrieve video input array and video input source: MWGetVideoInputSourceArray, MWGetVideoInputSource
5. Retrieve audio input array and audio input source: MWGetAudioInputSourceArray, MWGetAudioInputSource
6. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



19



20

InputSignalNotify
Supported Hardware Devices: Pro Capture cards

Contents Demonstrated in the Sample:

1. Monitoring capture card input signal changes
2. Channel selection via command parameters when multiple devices are available

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
3. Retrieve channel information: MWGetChannelInfo
4. Create video input signal change monitoring thread
5. Create audio input signal change monitoring thread
6. Exit video input signal change monitoring thread
7. Exit audio input signal change monitoring thread
8. Release resources: MWCloseChannel, MWCaptureExitInstance

Video Input Signal Change Monitoring Thread:

1. Create event: MWCreateEvent
2. Register notification: MWRegisterNotify
3. Wait for event: MWMultiWaitEvent
4. Retrieve video signal status: MWGetVideoSignalStatus
5. Unregister notification: MWUnregisterNotify
6. Close event: MWCloseEvent

Audio Input Signal Change Monitoring Thread:

1. Create event: MWCreateEvent
2. Register notification: MWRegisterNotify
3. Wait for event: MWMultiWaitEvent
4. Retrieve audio signal status: MWGetAudioSignalStatus
5. Unregister notification: MWUnregisterNotify
6. Close event: MWCloseEvent

Result:



21

Flowchart:



22



23

ReadWriteEDID
Supported Hardware Devices: Pro/USB Capture devices supporting HDMI signals

Contents Demonstrated in the Sample:

1. Export EDID from a specified channel to a binary file
2. Import a binary file (EDID) from a specified path and write it to a specified channel

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Open the device:

i. Open the device specified by command parameters: MWOpenChannel
ii. When no device is specified in command parameters, open the first available channel by default: MWGetDevicePath,

MWOpenChannelByPath
3. Retrieve channel information and filter devices: MWGetChannelInfo, MWGetVideoInputSource, MWGetAudioInputSource
4. Determine based on command parameters whether to export the current channel information to a binary file or import binary file information and

write it to the current channel:
i. Save EDID information from the specified channel to a binary file:

i. Retrieve EDID information: MWGetEDID
ii. Write to binary file

ii. Read binary file information and write to the specified channel:
i. Read binary file: fread
ii. Write EDID to current channel: MWSetEDID

5. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



24



25

USBDeviceDetect
Supported Hardware Devices: USB Capture devices

Contents Demonstrated in the Sample:

1. Monitoring hot-plugging events of USB capture devices

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Declare hot-plug callback function: LPFN_HOT_PLUG_CALLBACK
3. Register hot-plug monitoring: MWUSBRegisterHotPlug

i. When device connection is detected:
i. Open channel: MWOpenChannelByPath
ii. Retrieve channel information: MWGetChannelInfo
iii. Close channel

ii. When device disconnection is detected
4. Unregister hot-plug monitoring: MWUSBUnRegisterHotPlug
5. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



26



27

SetUSBCaptureFourcc
Supported Hardware Devices: USB Capture devices

Contents Demonstrated in the Sample:

1. Reading and configuring the color space of USB capture devices

Call Logic:

1. Obtain version information, initialize, and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Retrieve device information and filter devices: MWGetChannelInfoByIndex
3. Open the device: MWOpenChannelByPath
4. Read the current value: MWUSBGetVideoOutputFOURCC
5. Set to new content: MWUSBSetVideoOutputFOURCC
6. Save the settings: MWUSBSaveOptions
7. Restore to the previous value: MWUSBSetVideoOutputFOURCC
8. Save the settings: MWUSBSaveOptions
9. Release resources: MWCloseChannel, MWCaptureExitInstance

Result:

Flowchart:



28



29

Mp4Repair
Supported Video Files: Corrupted files recorded using the LibMWMp4 library

Contents Demonstrated in the Sample:

1. Repair a single corrupted file
2. Repair multiple corrupted files in a folder

Call Logic:

1. Repair a single corrupted file: Call the API to repair a single file
2. Repair multiple corrupted files in a folder:

i. Enumerate files meeting the criteria in the folder
ii. Call the API to repair each file

Result:



30

AVCapture
Supported Hardware Devices: Pro Capture cards

Contents Demonstrated in the Sample:

1. Preview captured video and monitor captured audio
2. Freely select video capture devices and their corresponding audio devices
3. Freely switch capture parameters: resolution, frame rate, color space
4. Support multi-channel capture: simultaneously capture one or two audio/video streams and render them separately.
5. Record captured audio and video data as FLV files.

Call Logic:

1. Obtain version information, initialize and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device information and interface information: MWGetChannelInfoByIndex
3. Create a video rendering layer and overlay it on the current window: createPreviewLayer
4. Open channel: MWGetDevicePath, MWOpenChannelByPath
5. Create audio renderer: MWAudioRenderCreate, MWAudioRenderStart
6. Start video capture and rendering thread
7. Start audio capture and rendering thread
8. Enter main thread loop
9. Click menu to switch audio/video channels or capture parameters:

i. Stop audio capture and rendering thread
ii. Stop video capture and rendering thread
iii. Destroy audio renderer: MWAudioRenderStop, MWAudioRenderDestroy
iv. Close channel: MWCloseChannel
v. Open channel and capture/render according to set channel and capture parameters: steps 4, 5, 6, 7

10. After clicking the close button, exit capture and release resources:
i. Stop audio capture and rendering thread
ii. Stop video capture and rendering thread
iii. Destroy audio renderer: MWAudioRenderStop, MWAudioRenderDestroy
iv. Close channel: MWCloseChannel
v. Destroy instance: MWCaptureExitInstance.

Video Capture and Rendering Thread:

1. Start video capture: MMWStartVideoCapture
2. Create Event: MWCreateEvent
3. Register timer: MWRegisterTimer
4. Set time schedule: MWScheduleTimer
5. Wait for Event: MWTryWaitEvent, MWWaitEvent, MWMultiWaitEvent
6. Capture video data: MWCaptureVideoFrameToVirtualAddressEx
7. Get current capture status and release capture card resources: MWGetVideoCaptureStatus
8. Repeat steps 4, 5, 6, 7 until thread exits
9. Unregister timer: MWUnregisterTimer

10. Close Event: MWCloseEvent
11. Stop capture: MWStopVideoCapture

Audio Capture and Rendering Thread:

1. Start audio capture: MWStartAudioCapture
2. Create Event: MWCreateEvent
3. Register message notification: MWRegisterNotify
4. Wait for Event: MWTryWaitEvent, MWWaitEvent, MWMultiWaitEvent
5. Capture audio data: MWCaptureAudioFrame
6. Render audio data
7. Repeat steps 4, 5, 6 until thread exits
8. Unregister message notification: MWUnregisterNotify
9. Close Event: MWCloseEvent

10. Stop capture: MWStopAudioCapture

Result:



31



32

Flowchart:



33



34

AVCapture2
Supported Hardware Devices: Pro Capture cards, USB Capture devices

Contents Demonstrated in the Sample:

1. Preview captured video and monitor captured audio
2. Freely select video capture devices and their corresponding audio devices
3. Freely switch capture parameters: resolution, frame rate, color space
4. Support multi-channel capture: simultaneously capture one or two audio/video streams and render them separately

Call Logic:

1. Obtain version information, initialize and enumerate devices: MWGetVersion, MWCaptureInitInstance, MWRefreshDevice, MWGetChannelCount
2. Filter supported devices based on device information and interface information: MWGetChannelInfoByIndex
3. Create a video rendering layer and overlay it on the current window: createPreviewLayer
4. Open channel: MWGetDevicePath, MWOpenChannelByPath
5. Create audio renderer: MWAudioRenderCreate, MWAudioRenderStart
6. Start video capture: MWCreateVideoCapture
7. Start audio capture: MWCreateAudioCapture
8. Enter main thread loop
9. Click menu to switch audio/video channels or capture parameters:

i. Stop audio capture: MWDestroyAudioCapture
ii. Stop video capture: MWDestroyVideoCapture
iii. Destroy audio renderer: MWAudioRenderStop, MWAudioRenderDestroy
iv. Close channel: MWCloseChannel
v. Open channel and capture/render according to set channel and capture parameters: steps 4, 5, 6, 7

10. After clicking the close button, exit capture and release resources:
i. Stop audio capture: MWDestroyAudioCapture
ii. Stop video capture: MWDestroyVideoCapture
iii. Destroy audio renderer: MWAudioRenderStop, MWAudioRenderDestroy
iv. Close channel: MWCloseChannel
v. Destroy instance: MWCaptureExitInstance.

Result:



35



36

Flowchart:



37


	Overview
	Version History
	Example Introduction
	Audio Capture Example
	Capture By Input Example
	Capture By Timer Example
	Get ANC Packet Example
	HDMI Info Frame Example
	Input Signal Example
	Input Source Example
	Input Signal Notify Example
	Read-Write EDID Example
	USB Device Detect Example
	Set USB Capture Fourcc Example
	Repair MP4 Files Example
	AV Capture Example
	AV Capture Example 2

